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Abstna. The Lie symmetry vector fields are derived for a nonlinear equation in plasma 
physics. 

For a collisionless plasma of cold ions and warm electrons, the basic system of partial 
differential equations may be given as follows [ l ]  

(1) 
an  a 
-+-(nu) = o  (equation of continuity) ar ax 

au 
?!+,-=E (equation of motion) 
d l  Jx 

(balance of pressure and electric force) (3) 

(4) 

8% 
ax 

aE 
-= n - n e  (the Poisson equation) 
ax 

n. E -= - 

where n and ne denote the density of ions and electrons, respectively, U is the flow 
velocity of the ions, and E is the electric field. All these quantities are dimensionless. 
The inertia term is neglected because of the small mass of electrons. We can eliminate 
n and E from system (1)-(4). We obtain 

au a u  1 an  
-+U-+- -=o 
ar ax ne ax 

an. a aP -+- (n .u)+-=O 
at ax ax 

where 

We now show that the Korteweg-de Vries equation is included in these equations 
under certain approximations. We introduce the transformation 

~ ( x , ~ ) = E ~ ’ ~ ( x - - I )  ?(X) = P X  (8) 

u(c(x, 0, ?(x))= u(x, 0 (9) 

0305-4470/91/140785+03$03.50 0 1991 IOP Publishing Ltd L785 

n.(c(x, 1 ) .  ?(x)) = nAx, 1 )  
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and apply the formal expansion (reductive perturbation method) 

U(& 7) = &U(I)((, 7 ) + & 2 U ' 2 ' ( 5 ,  v)+. . . 
ne(& 7)= 1 +&fly'(#, q ) + & 2 n p ( 5 ,  v)+. . . . 

(10) 

(11) 

Then we find that 
u ( I ) -  ( I '  

- ne 

and 

Thus we see that U, the ion-fluid velocity, and n,, the electron density, obey the same 
Korteweg-de Vries equation, and move with the same phase, U'')= n;'. The nonlinear 
term d ' )au ' " /ag  comes from the interaction of ions with electrons affecting ions 
themselves, and nY'an;'/J[ expresses a similar effect on electrons through the inter- 
action with ions. 

It is well known that the Korteweg-de Vries equation admits an infinite hierarchy 
of Lie-Backlund vector fields and an infinite hierarchy of conservation laws. Moreover, 
it admits a Lax representation, an auto-Backlund transformation and passes the 
Painlev6 test [2,3]. The Korteweg-de Vries equation 

a u  a u  a 5  -+u-+---j=o 
a t  ax ax (14) 

has the following Lie symmetry vector fields 

a a  J a a 
t - f -  x - + 3 t - - 2 u -  a - a 

ax a t  JX a u  JX a t  a u  
- 

For our study of the symmetry vector fields of system (1)-(4) we adopt the jet bundle 
fcm.2.!i,m. Frcrr! system (I)+) -ae chtaix the sEbE-a-ifc!d., [q 

F, = n, + n,u+ nu, = 0 

F 2 3  U ,  + UU, - E = O  

F3= ne, + n,E = 0 

F4 s E, - n + n. = 0 

(15) 

(16) 

(17) 
(18) 

and their differential consequences. Let V be a Lie symmetry vector field. Let V, be 
the corresponding vertical vector field. Then the invariance condition of system (1)-(4) 
is given by 

L""4 6 0 j = 1 , .  . . , 4  
...I.--- -*"..A" c-- .I." .- ..-,..*:--- ^*_.._I^_ 111 I " ,  1 .̂ ..- c-". -*..A.. .I.̂ 
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scale invariance of system (1)-(4). The ansatz for the Lie symmetry vector field 
describing the scale invariance is given by 

W.ICIC = D L P l l Y J  1UI 

a a a a J a 
S = C , X - +  c2 f -+  c,u-+ can-+ c S ~ . - +  c6E- 

ax a t  a u  a n  an. a E  
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where c,, , . . , c6 are real constants. From the invariance condition we find that c, = . . . = 
c, = 0. This means that system (1)-(4) does not admit a scale symmetry. 

The ansatz for the Lie symmetry vector fields 

a a a a a a  
ax at au a n  an,  aE 

V =  a-+b--+c- -+d-+e-+ f- 

where a,.  . . , f are functions of x, 1, U, n, n e ,  E, gives the symmetry vector fields 

a a a  a 
ax at ax au 

f-+-. - - 

The first two symmetry vector fields are obvious, since the system (1)-(4) does not 
depend explicitly on t and x. The transformation group associated with the third vector 
field is given by 

t ’ ( X ,  1, E )  = t (20) 
X ’ ( X ,  1, E )  = & t + X  (21) 

U ’ ( X ’ ( X , t ) ,  l ’ ( X , t ) , E ) = E + U ( X , f )  (22) 

n ’ ( X ’ ( X ,  t ) ,  t ’ ( X ,  1) .  E )  = n ( X ,  1 )  (23) 

n:(x’(x, f ) ,  t ’ ( X ,  1 ) .  E )  = 1 )  (24) 

E’(x ’ (x ,  1 ) .  t ’ ( X ,  1 ) .  E )  = E(x,  1 ) .  (25) 

We also studied the existence of Lie Backlund symmetry vector fields. In this case the 
coefficients a, . . . ,  f of the vector field given by (19) depend on x, t, U, n, ne ,  E, 
U,, . . . , E,,. We find that system (1)-(4) does not admit Lie-Backlund vector fields of 
this form. Finally we mention that system (1)-(4) does not pass the Painlev6 test [Z, 31. 
These results indicate that system (1)-(4) is not completely integrable, although an 
approximation leads to a completely integrable system, namely the Korteweg-de Vries 
e q n a t i o n . 
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