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Symmetries of a nonlinear equation in plasma physics

N Eulert, W-H Steebt and P Mulser}

1 Department of Applied Mathematics and Nonlinear Studies, Rand Afrikaans University,
PO Box 524, Johannesburg 2000, Republic of South Africa

§ Institut fiir Angewandte Physik, Technische Hochschule Darmstadt, D-6100 Darmstadt,
Federal Republic of Germany

Received 18 April 1991

Abstract. The Lie symmetry vector fields are derived for a nonlinear equation in plasma
physics.

For a collisionless plasma of cold ions and warm electrons, the basic system of partial
differential equations may be given as follows [1]

on ¢

E-t-+a—x (nu)=0 (equation of continuity) (1)
du ou

qu ou_ . ; ,

o uax {equation of motion) (2)
an, .

o =-nE {balance of pressure and electric force) (3)
aE . .

a_x= n—n, (the Poisson equation) (4)

where n and n. denote the density of ions and electrons, respectively, u is the flow
velocity of the ions, and E is the electric field. All these quantities are dimensionless.
The inertia term is neglected because of the small mass of electrons. We can eliminate
n and E from system (1)-(4). We obtain

ou_ ou 1an_

5
at uax n. éx )
on, 9 oP
Pet 2 (nau)+==0 (6)
dt  odx ax

where
a "] 19
P=—(—+u—)(——-’5). (7)
ar 0x/ \n, dx

We now show that the Korteweg-de Vries equation is included in these equations
under certain approximations. We introduce the transformation

E(x, 1)=¢e"*x—1) n(x)=¢&"’x (8)
u(é(x, 1), n(x)}=u(x,t) n(€(x, 1), n(x)}=nx, 1) 9)
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and apply the formal expansion (reductive perturbation method)

u(g, n)=eu'V(g )+ 2uP(g )+, .. (10)

n(&n)=1+enl" (£ n)+e2n(E n)+.. S
Then we find that

wV = g0
and

Bu“) au(l) 6‘3 (¢}

—+u' + =0

o o Y; o {12)

(1 (1} 3 (1)
e pan¥e  Bhe 4 (13)

an ¢ Bt a&’

Thus we see that u, the ion-fluid velocity, and n,, the electron density, obey the same
Korteweg-de Vries equation, and move with the same phase, 4"’ = n!". The nonlinear
term u’9u'"/a¢ comes from the interaction of ions with electrons affecting ions
themselves, and n'Vanl"/a¢ expresses a similar effect on electrons through the inter-
action with ions.

It is well known that the Korteweg~de Vries equation admits an infinite hierarchy
of Lie-Béacklund vector fields and an infinite hierarchy of conservation laws. Moreover,
it admits a Lax representation, an auto-Bicklund transformation and passes the
Painlevé test [2, 3}. The Korteweg-de Vries equation

au_ du du

—+y——t+—=0 14
at uax ax> (14)

has the following Lie symmetry vector fields

a d g 4 2] a d
— — —+— x—+3t——2u—,
ox at ax du ax at du
For our study of the symmetry vector fields of system (1)- (4) we adopt the jet bundle
formalism. From system (1)-{4) we obiain the submanifolds {41
AVSE AELVREBIALE, A AWFR J AL N Ly \‘f} ¥ W UULALEL ‘r v J lllullllul\-l\) L-I’J
Fi=n+nu+nu.=0 (15}
Fo=u+uu,—E=0 (16)
FJEnex+neE=0 (17)
F,=E —-n+n=0 {18)

and their differential consequences. Let V be a Lie symmetry vector field. Let V, be
the corresponding vertical vector field. Then the invariance condition of system (1)~(4)
is given by

A =
Ly F20 i=1,....,4
whawa A o o oot o b endiita s (P Locdarn (1Y (AY T b o Beat crdi thia
here 2 stands for the restriction to solutions of system {(1)}-(4). Let us first study the

scale invariance of system (1)-(4). The ansatz for the Lie symmetry vector field
describing the scale invariance is given by

d d i} g a
S=c¢x—+ct~—+cu—+en—=+csh +cE——
1 a Za 3 a 4 an 5 cane (] aE
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where ¢,, ..., ¢s are real constants. From the invariance condition we find that¢,=...=
¢s = 0. This means that system (1)-(4) does not admit a scale symmetry.
The ansatz for the Lie symmetry vector fields

a a 2] d g a
V=a—+b—+c¢—+d—+e—+f— (19)
ax ot ou a3n  édn, " OE
where q, ..., f are functions of x, t, u, n, n,, E, gives the symmetry vector ficlds
9 3 8.3
ax ot ax ou’
The first two symmetry vector fields are obvious, since the system (1)-{4) does not

depend explicitly on t and x. The transformation group associated with the third vector
field is given by

{x te)=t (20)
x'(x, t,e)=¢et+x (21)
w'(x'(x, 1), t'(x, 1), e)=e+u(x, 1) (22)
n'(x'(x, 1), t'(x, t), e)=n(x, 1) {23)
nx'(x, 1), I'(x, t), e)=nx 1) (24)
E'(x'(x, 1), t'(x, 1), e) = E(x, t}. (25)

We also studied the existence of Lie Backlund symmetry vector fields. In this case the
coefficients a,...,f of the vector field given by (19) depend on x, ¢, u, n, n., E,
U, ..., E. We find that system {1}-(4) does not admit Lie-Bécklund vector fields of
this form. Finally we mention that system (1)-(4) does not pass the Painlevé test [2, 3].
These results indicate that system (1)-(4) is not completely integrable, although an
approximation leads to a completely integrable system, namely the Korteweg-de Vries
equation.
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